The relationship between step count and all-cause mortality and cardiovascular events: A dose–response meta-analysis Mingxin Sheng^a, Junyue Yang^a, Min Bao^a, Tianzhi Chen^b, Ruixue Cai^a, Na Zhang^a, Hongling Chen^a, Minqi Liu^a, Xueyu Wu^a, Bowen Zhang^a, Yiting Liu^a, Jianqian Chao^{a,*} ^a Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China ^b Department of Health Policy and Management, School of Public Health, Peking University, Beijing 100191, China * Corresponding author. E-mail address: chaoseu@163.com (J.Q. Chao) Running head: Step count and cardiovascular events # SUPPLEMENTAL MATERIAL ## **Supplementary File 1** Literature search strategy Cochrane Central Register of Controlled Trials (Issue 7 of 12, July 2021) ((step count) OR (steps per day) OR (daily steps)) AND ((cardiovascular disease) OR (cardiovascular events) OR (heart disease) OR (cerebrovascular accident) OR (angina) OR (stroke) OR (myocardial infarction) OR (heart infarction) OR (ischemic heart disease)) -in Abstract #### **EMBASE** ('step count'/exp OR 'step count' OR 'daily steps' OR 'steps per day') AND ('heart disease'/exp OR 'heart disease' OR 'cardiovascular disease' OR 'cardiovascular disease' OR 'cardiovascular events' OR 'heart infarction'/exp OR 'heart infarction' OR 'ischemic heart disease'/exp OR 'ischemic heart disease' OR 'cerebrovascular accident'/exp OR 'cerebrovascular accident' OR 'heart failure'/exp OR 'heart failure' OR 'angina'/exp OR angina OR 'stroke'/exp OR stroke OR 'myocardial infarction' OR 'coronary artery disease'/exp OR 'coronary artery disease' OR 'death'/exp OR death OR 'cause of death'/exp OR 'cause of death' OR 'mortality'/exp OR mortality) #### **OVID** 9 Resources selected: 1) Journals@Ovid Full Text <July 07, 2021>, 2) JBI EBP Database <Current to June 30, 2021>, 3) EBM Reviews-ACP Journal Club <1991 to June 2021>, 4) EBM Reviews-Cochrane Central Register of Controlled Trials <June 2021>, 5) EBM Reviews-Cochrane Database of Systematic Reviews <2005 to July 8, 2021>, 6) Embase <1974 to 2021July 08>, 7) Ovid Emcare <1995 to 2021 Week 26>, 8) Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, Daily and Versions(R) <1946 to July 08, 2021>, 9) APA PsycInfo <1987 to July Week 1 2021>. #1 (cardiovascular disease or myocardial infarction or coronary or cardiovascular events or heart disease or ischemic heart disease or cerebrovascular accident or angina or stroke or heart infarction or death or mortality or cause of death or all-cause of death or all-cause mortality).af. #2 (cohort or prospective or trial or clinical trial or follow-up).af. #3 (step count or steps per day or daily steps).af. #1 and #2 and #3 ### PubMed ((step count) OR (steps per day) OR (daily steps)) AND ((cardiovascular disease) OR (cardiovascular events) OR (heart disease) OR (cerebrovascular accident) OR (angina) OR (stroke) OR (myocardial infarction) OR (heart infarction) OR (ischemic heart disease) OR (mortality) OR (cause of death) OR (all-cause mortality) OR (all-cause death) OR (death)) AND (cohort OR prospective OR trial OR (clinical trial) OR (follow-up)) ## Scopus (("step count" OR "steps per day" OR "daily steps") AND ("cardiovascular disease" OR "cardiovascular events" OR "heart disease" OR "ischemic heart disease" OR "cerebrovascular accident" OR arrhythmias OR "heart failure" "myocardial OR stroke "myocardial infarction" OR mortality OR OR death" OR "all-cause of death" OR "all-cause mortality" OR death) AND (cohort prospective OR "clinical trial" OR "follow-up")) AND (LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO(EXACTKEYWORD, "Adult")) ## Web of Science TS = (("step count" OR "steps per day" OR daily steps) AND ("cardiovascular disease" OR "cardiovascular events" OR "heart disease" OR "ischemic heart disease" OR cerebrovascular accident OR angina OR stroke OR "heart infarction" OR myocardial infarction OR mortality OR "cause of death" OR "all-cause of death" OR "all-cause mortality" OR death) AND (cohort OR prospective OR trial OR clinical trial OR follow-up)) # Supplementary File 2 Literature Search result After the exclusion of duplicates and studies that did not fulfill the inclusion criteria, 23 remaining articles seemed to be relevant for this meta-analysis. After evaluating the full texts of these 23 publications, we excluded 7 articles as follows: Two articles^{1, 2} were excluded owing to lack of sufficient data for estimation of RRs. Four articles³⁻⁶ were excluded because they did not separately report step count. We also excluded one article⁷ because only its abstract was written in English. The final meta-analysis included 16 publications. Among these 16 publications, 12 publications provided statistical effects relevant to the meta-analyses on all-cause mortality, 4 articles on total CVD, 1 article on stroke⁸. One article⁹ was a randomized controlled trial, and others were prospective cohort studies. We included 3 conference papers in the final meta-analysis.¹⁰⁻¹² Indeed, we could not assure the quality and reliability of these findings without peer review. However, journals that sponsored these conferences had a high impact factor, and sufficient data we need was reported on the meeting abstract. Therefore, we decided to include these conference papers. Supplementary Table 1. Step count and all-cause mortality. | Study | Country;
Study name;
No of participants;
No of cases | Age at
baseline
(years),
Year of
baseline
assessment,
Follow-up
(years) | Case ascertainment | Pedometer or
Accelerometer,
Device(s), Location,
Duration | Number of
steps per day | Corresponding
hazard ratio
(95% CI) | Covariates | Quality
assessment* | |--|--|--|---|--|--|---|--|------------------------| | Dwyer et al. (2015) ¹³ | Australia; the Tasped Prospective Cohort Study; $n = 2576$ (1226 men, 1350 women); 219 cases | >18,
2000–05,
10.0 years | The Australian
National Death
Index | Pedometer,
Digi-Walker SW-200
(YAMASA, Tokyo,
Japan), HJ-003 and
HJ-102(Omron, Tokyo,
Japan), waist, 7 days | 0–5550
5551–8000
8001–10000
10001–3500
13501–39164 | 1
0.43 (0.30–0.62)
0.25 (0.16–0.38)
0.24 (0.15–0.37)
0.10 (0.05–0.18) | Age, sex, BMI at baseline, total energy intake from all sources(kJ) at baseline, current smoking status at baseline, alcohol consumption (g/day) at baseline, education at baseline and study cohort | 8 | | Fox et al. (2015) ¹⁴ | The United Kingdom; project OPAL (Older People and Active Living); $n = 213(109 \text{ men}, 104 \text{ women})$; 33 cases | ≥70,
2007–08,
4.2years | Medical records,
death certificates | Accelerometer, GT1Ms
(ActiGraph, Pensacola,
FL, USA) waist,7 days | <3196
3196–5170
>5170 | 7.69 (1.43–41.20)
3.99 (0.80–20.01)
1 | Age, gender, educational attainment, IMD, weight status, GP Management System and number of self-reported chronic illnesses at baseline | 9 | | Yamamoto et al. (2018) ¹⁵ | Japan;
study on the relationship
between environmental
factors and health
outcomes in Niigata
City, Japan; <i>n</i> = 419 (228
men,191 women);
76 cases | 71,
1998–99,
9.8 years | Medical records,
death certificates | Pedometer, EC-100S
(YAMASA, Tokyo,
Japan), waist,7 days | <4503
4503–6110
6111–7971
>7972 | 1
0.81(0.43–1.54)
1.26(0.70–2.26)
0.46(0.22–0.96) | Sex, body mass index (continuous variable), cigarette smoking (never-smokers, past smokers, current smokers), alcohol intake (non, 1–2 times/week, 3–5 times/week, 6–7 times/week), and medication use (yes, no) | 8 | | German et al. (2019) ¹⁰ | The United States; the 2005–2006 NHANES survey; <i>n</i> = 4055 (1914 men, 2141 women); 474 cases | 45.9,
2005–06
12 years | The National Death
Index | Accelerometer,
AM-7164 (ActiGraph,
Pensacola, FL, USA),
right hip, 7 days | <2500
2500–4999
5000–7500
7500–9999
>10000 | 1
0.50(0.36–0.68)
0.27(0.19–0.38)
0.20(0.10–0.38)
0.33(0.15–0.69) | Some adjustment factor ^a | 7 | | Jefferis et al. (2019, UK) ¹⁶ | The United Kingdom;
the British Regional Heart
Study; $n = 1181$ men; 194
cases | 71–92,
2010–12,
5.0 years | National Health
Service central
registers | Accelerometer GT3x
(ActiGraph, Pensacola,
FL, USA), right hip,7
days | 121–2927
2928–4532
4533–6412
6413–17781 | 1
0.63(0.43–0.93)
0.59(0.39–0.90)
0.31(0.17–0.57) | Age, region of residence, season of
wear, accelerometer wear time, social
class, alcohol use, smoking, sleep time,
living alone, body mass index, mobility
disability. | 9 | | Lee et al. (2019) ¹⁷ | The United States; the Women's Health Study (WHS); $n = 16741$ women; 504 cases | 62–101,
2011–12,
4.3 years | Medical records,
death certificates,
or the National
Death Index | Accelerometer, GT3X+
(ActiGraph, Pensacola,
FL, USA), hip, 7 days | 2128–3202
3992–4738
5493–6403
7580–9954 | 1
0.59(0.47–0.75)
0.54(0.41–0.72)
0.42(0.3–0.60) | Age, wear time, smoking status, alcohol use, intakes of saturated fat, fiber, fruits, and vegetables, hormone therapy, parental history of myocardial | 9 | | | | | | | | | infarction, family history of cancer,
general health, history of cardiovascular
disease, history of cancer, and cancer
screening. | | |---|--|--|---|--|--|--|--|---| | Hansen et al. (2020) ¹⁸ | Norway; a nationwide multicenter physical activity surveillance study; <i>n</i> = 2183(1026 men, 1157 women); 119cases | 40–85,
2008–09,
9.1 years | The Norwegian
Cause of Death
Registry | Accelerometer, GT1M
(ActiGraph, Pensacola,
FL, USA), waist, 7
days | 3495–5325
6388–7350
8215–9186
10556–13110 | 1
0.52(0.29–0.93)
0.50(0.27–0.94)
0.43(0.21–0.88) | Sex, wear time, VPA, education, body mass index, smoking (never/former/current), alcohol intake, and number of medical conditions, excluding deaths within first 2 y $(n = 9)$. | 9 | | Oftedal et al. (2020) ¹⁹ | Australia; the Hunter
Community Study (HCS);
n = 1697 (860 men, 837
women); 204 cases | 55–85,
2005–08,
9.6 years | Medical records,
death certificates | Pedometer Digi-Walker
SW-200 (YAMASA,
Tokyo, Japan), waist, 7
days | Median
(IQR)6678
(4689–8850) | 0.93(0.88–0.98)
per 1000–step
increment | Mean age and diet quality score, and reference categories 'low income' and 'current smoker'. | 9 | | Paluch et al. (2020) ¹¹ | The United States; the Coronary Artery Risk Development in Young Adults (CARDIA) study; $n = 2027$ (851 men, 1176 women); 67 cases | 45.3±3.5,
2005–06,
10.8±0.9
years | The state health department | Accelerometer, 7164
(ActiGraph, Pensacola,
FL, USA), hip, >4 days | 5898-7452
8553-9489
10501-11472
12904-15660 | 1
0.43(0.20–0.90)
0.83(0.45–1.56)
0.48(0.23–0.99) | Wear time, age, sex, race, max education, center, healthy eating index, smoking status, alcohol intake, history of cardiovascular disease, type 2 diabetes, hypertension, obesity, hypercholesterolemia. | 7 | | Saint-Maurice et al. (2020) ²⁰ | The United States; the National Health and Nutrition Examination Survey (NHANES); $n = 4840$ (2405 men, 2435 women); 1165 cases | >40,
2003–06,
10.1 years | The National Death
Index | Accelerometer, 7164
(ActiGraph, Pensacola,
FL, USA), hip,7 days | 4000
8000
12000 | 1
0.49(0.44–0.55)
0.35(0.28–0.45) | steps per day, sex, age, diet quality, race/ethnicity, body mass index, education, alcohol consumption, smoking status, diabetes, stroke, coronary heart disease, heart failure, cancer, chronic bronchitis, emphysema, mobility limitation, and self–reported general health. | 9 | | Ma ñas et al.
(2021) ²¹ | Spain; the Toledo Study for Healthy Aging (TSHA); $n = 768$ (354 men, 414 women); 89 cases | 78.8 ±4.9,
2015 - 17,
5.7 years | The Spanish
National Death
Index (Ministry of
Health, Consumer
Affairs and Social
Welfare) | Accelerometer,
wGT3X-BT,
(ActiGraph, Pensacola,
FL, USA), left hip, 7
days | 5835 ±3445
steps/day
(mean ±SD) | 0.87 (0.81–0.95)
per additional
1000 steps | Accelerometer wear time (covariate excluded in the steps/min models), age, sex, BMI, education, income, marital status and comorbidities. | 9 | | Schneider et al. (2021) ²² | The United Kingdom;
the UK Biobank; $n =$
95974 (41903 men,54071
women); 2290 cases | 37–73
2013–15
5.5 years | National death registries | Accelerometer, AX3 (Axivity, Newcastle upon Tyne, UK), wrist, 7 days | 6500
8000
9250
12000 | 1
0.36(0.18–0.75)
0.29(0.13–0.64)
0.15(0.05–0.44) | Sex, age, BMI, and alcohol consumption | 9 | Notes: *Quality assessment according to Newcastle-Ottawa scale (range 0 - 9) for cohort studies (see supplementary material for further details). a Unclear, not mentioned in the meeting abstract. Abbreviation: 95% CI = 95% confidence interval; BMI = body mass index; IMD = index of multiple deprivation; GP = general practitioner; VPA = take more vigorous intensity activity (e.g., jogging). Supplementary Table 2. Step count and cardiovascular disease. | Study | Country;
Study name;
No of participants;
No of cases | Age at
baseline
(years), Year
of baseline
assessment,
Follow-up
(years) | Case ascertainment | CVD
incidence
or mortality | Pedometer or
Accelerometer,
Device(s), Location,
Duration | Number of
steps per day | Corresponding
hazard ratio
(95% CI) | Covariates | Quality
assessment* | |---|---|---|--|----------------------------------|--|--|---|---|------------------------| | Cochrane et al. (2017) ⁹ | The United States; the LIFE (Lifestyle Interventions and Independence for Elders) Study; <i>n</i> = 1590 (521 men, 1069 women); 234 cases | 78.9±5.2,
2010—13,
2.7 years ^b | Hospital records included MI, silent MI, hospitalized angina, congestive heart failure, revascularization with bypass surgery or percutaneous angioplasty, aortic aneurysm, peripheral artery disease, stroke, and transient ischemic attack | Incidence | Accelerometer,
GT3x (ActiGraph,
Pensacola, FL,
USA), hip, 7 days | 2681±1475 | 0.90(0.85–0.96)
per 500 steps | Accelerometer wear time, site and sex, randomization, race, age, education, living alone, and marital status, diabetes mellitus, cardiovascular disease, and antihypertensive use, ankle - brachial index, systolic and diastolic blood pressure, and Pittsburgh Sleep Quality Index score. | 9 | | Jefferis et al. $(2019)^{23}$ | The United Kingdom;
the British Regional
Heart Study (BRHS); <i>n</i>
= 1181 men; 122 cases | 71—92,
2010—12,
4.9 years | International Classification of Disease (ICD) 9 codes: MI 410–414 (ICD 10 codes I20–I25), Stroke 430–438, (ICD10 I60–69) and Heart Failure 428 (ICD10 I50); yearly reviews of primary care notes | Incidence
and
mortality | Accelerometer,
GT3x (ActiGraph,
Pensacola, FL,
USA), right hip, 7
days | 121–2943
2944–4540
4541–6406
6407–17781 | 1.00
0.75(0.47–1.20)
0.44(0.25–0.77)
0.34(0.17–0.67) | Age, region of residence, season of wear, accelerometer wear time, social class, alcohol use, smoking, sleep time, living alone, BMI, mobility disability | 9 | | LaCroix et al. (2020) ¹² | The United Kingdom; the OPACH Study; <i>n</i> = 6379 women; 175 cases | 79±7,
2012–14,
followed to
March 31,
2017 | National Death Index | Mortality | Accelerometer,
GT3X+ (ActiGraph,
Pensacola, FL,
USA), waist, 7 days | 2000(ref.) | 1
0.48(0.32–0.73)
0.56(0.35–0.90)
0.25(0.11–0.54) | Age, race-ethnicity,
education, smoking status,
alcohol consumption,
self-reported health,
multimorbidity, and
physical function | 6 | | Moniruzzaman et al. (2020) ⁸ | Japan; Shiga
Epidemiological Study
of Subclinical
Atheroscleros
(SESSA); $n = 680$
men;145 cases | 40–79,
2006–08,
5 years | The presence of CSVD was assessed in participants by brain MRI | Incidence | Pedometer
Digi-Walker
DW-200
(YAMASA, Tokyo,
Japan), waist,
7 days | ≤6060
6061–8174
8175–10614
≥10615 | 1 ^a 0.81(0.50–1.34) ^a 0.52(0.30–0.89) ^a 0.69(0.41–1.17) ^a | Adjusted for age, smoking and drinking status | 9 | | Saint-Maurice et al. (2020) ²⁰ | The United States; the National Health and Nutrition Examination Survey (NHANES); <i>n</i> = 4840 (2405 men, | >40,
2003–06,
10.1 years | International Classification
of Diseases, 10th Revision
(ICD–10) codes for
cardiovascular disease
(CVD; ICD–10 code 053– | Mortality | Accelerometer,7164
(ActiGraph,
Pensacola, FL,
USA), hip, 7 days | 4000
8000
12000 | 1
0.49(0.40–0.60)
0.35(0.24–0.52) | Age, diet quality, sex,
race-ethnicity, BMI,
education, alcohol
consumption, smoking
status, diabetes, stroke, | 9 | | 2435 women); 406 | 075) | coronary heart disease, | |------------------|------|-------------------------------| | cases | | heart failure, cancer, | | | | chronic bronchitis, | | | | emphysema, mobility | | | | limitation, and self-reported | | | | general health. | Notes: *Quality assessment according to Newcastle-Ottawa scale (range 0 - 9) for cohort studies (see supplementary material for further details). Abbreviation: 95%CI = 95% confidence interval; BMI = body mass index; CVD = cardiovascular diseases; CSVD = cerebral small vessel disease; ICD = international classification of diseases; MI = myocardial infarction; MRI = magnetic resonance imaging. ^a Odds ratio with 95%CI ^bClinical Trial # Supplementary Table 3. Stratified analysis on associations of step count with risk of all-cause mortality and $\ensuremath{\text{CVD}}$. | | n | RR (95%CI) ^a | $I^{2}(\%)^{b}$ | p^{c} | |---|----|-------------------------|-----------------|---------| | All-cause mortality | 12 | | | | | Location | | | | | | the United States | 4 | 0.86 (0.84–0.87) | 0.0 | 0.673 | | the United Kingdom | 3 | 0.74 (0.62-0.89) | 67.1 | 0.048 | | Europe | 2 | 0.87 (0.82-0.93) | 0.0 | 0.863 | | Australia | 2 | 0.94 (0.91–0.97) | 0.0 | 0.760 | | Japan | 1 | 0.93 (0.84–1.03) | _ | _ | | Sex | | | | | | Male and female | 10 | 0.88 (0.84-0.92) | 72.0 | 0.000 | | Male | 1 | 0.84 (0.77-0.91) | _ | _ | | Female | 1 | 0.85 (0.80-0.90) | _ | _ | | Follow-up duration | | | | | | >5 years | 9 | 0.88 (0.85-0.92) | 72.5 | 0.000 | | ≤5years | 3 | 0.84 (0.80-0.89) | 12.7 | 0.318 | | Reduce chance of reverse causality | | | | | | Yes | 7 | 0.89 (0.86-0.93) | 53.7 | 0.044 | | No | 3 | 0.75 (0.61–0.91) | 75.8 | 0.016 | | Unclear | 2 | 0.87 (0.83-0.91) | 0.0 | 0.384 | | All-cause mortality (only by accelerometer) | 9 | | | | | Location | | | | | | the United States | 4 | 0.86 (0.84-0.87) | 0.0 | 0.673 | | the United Kingdom | 3 | 0.74 (0.62-0.89) | 67.1 | 0.048 | | Europe | 2 | 0.87 (0.82-0.93) | 70.0 | 0.863 | | Sex | | | | | | Male and female | 7 | 0.85 (0.82-0.89) | 45.2 | 0.090 | | Male | 1 | 0.84 (0.77-0.91) | _ | _ | | Female | 1 | 0.85 (0.80-0.90) | _ | _ | | Follow-up time | | | | | | >5 years | 6 | 0.86 (0.83-0.89) | 41.3 | 0.13 | | ≤5 years | 3 | 0.84 (0.80-0.89) | 12.7 | 0.318 | | Location of accelerometer | | | | | | Waist/hip | 8 | 0.86(0.84-0.87) | 0.0 | 0.703 | | Wrist | 1 | 0.68(0.57-0.81) | _ | _ | | Reduce chance of reverse causality | | | | | | Yes | 4 | 0.86 (0.82-0.89) | 0.0 | 0.875 | | No | 3 | 0.75 (0.61–0.91) | 75.8 | 0.016 | | Unclear | 2 | 0.87 (0.83-0.91) | 0.0 | 0.384 | | CVD | 5 | | | | | Location | | | | | | the United States | 2 | 0.93 (0.91-0.94) | 4.0 | 0.307 | | the United Kingdom Japan | 2 | 0.94 (0.91-0.97) | 13.5 | 0.282 | | | 1 | 0.98 (0.96–1.00) | - | - | |------------------------------------|---|------------------|------|-------| | Sex | | | | | | Male and female | 2 | 0.93 (0.91-0.94) | 4.0 | 0.307 | | Male | 2 | 0.97 (0.94–1.00) | 61.9 | 0.105 | | Female | 1 | 0.92 (0.88-0.97) | - | - | | Follow-up time | | | | | | >5 years | 1 | 0.93 (0.92-0.95) | _ | _ | | ≤5 years | 4 | 0.94 (0.91-0.98) | 74.0 | 0.009 | | Type of wearable devices | | | | | | Pedometer | 1 | 0.98 (0.96-1.00) | _ | _ | | Accelerometer | 4 | 0.93 (0.92-0.94) | 0.0 | 0.392 | | Endpoints | | | | | | Total CVD | 4 | 0.93 (0.92-0.94) | 0.0 | 0.392 | | Single CVD endpoint | 1 | 0.98 (0.96-1.00) | - | - | | Reduce chance of reverse causality | | | | | | Yes | 1 | 0.95 (0.92–0.98) | _ | _ | | No | 3 | 0.94 (0.90-0.98) | 89.1 | 0.000 | | Unclear | 1 | 0.92 (0.88-0.97) | _ | _ | Notes: ^a Obtained from the random-effects model Abbreviation: $RR = relative \ risk-95\% \ CI = 95\% \ confidence \ interval; \ CVD = cardiovascular \ diseases.$ ^b Inconsistency- percentage of variation across studies due to heterogeneity $^{^{\}rm c}$ Obtained from the Q test **Supplementary Fig. 1**. Forest plot of step count and risk of all - cause mortality per 1000-step increment. **Supplementary Fig. 2** Step count and all-cause mortality, highest vs. lowest analysis. **Supplementary Fig. 3**. Forest plot of step count and risk of cardiovascular disease per 500-step increment. Supplementary Fig. 4. Step count and CVD, highest vs. lowest analysis. **Supplementary Fig. 5** Non-linear dose–response analysis of step count and all-cause mortality by accelerometer. **Supplementary Fig. 6** Linear dose–response analysis of step count and all-cause mortality by pedometer. Supplementary Fig. 7 Non-linear dose–response analysis of step count and cardiovascular events by accelerometer. **Supplementary Fig. 8**. The funnel plot for publication bias of step count and all-cause mortality produced by Egger's test. Supplementary Fig. 9. Sensitive analysis of step count and all-cause mortality per 1000-step increment. Supplementary Fig. 10. Sensitive analysis of step count and CVD per 500-step increment #### References - 1. Wanderley FA, Silva G, Marques E, Oliveira J, Mota J, Carvalho J. Associations between objectively assessed physical activity levels and fitness and self-reported health-related quality of life in community-dwelling older adults. *Qual Life Res* 2011;**20**:1371-8. doi: 10.1007/s11136-011-9875-x. - 2. German CA, McClain AC, Elfassy T. Associations between steps and years of potential life lost in the us population. *Circulation* 2019;**140**:2. - 3. Hayashi F, Yokoyama T, Yoshiike N. Dietary intake and health behavior in relation to total and disease-specific mortality in Japan: an ecological analysis. *Nihon koshu eisei zasshi* 2009;**56**:633-44.[article in Japanese]. - 4. Slawson DC. Increased daily steps associated with reduced all-cause mortality. *Am Fam Physician* 2020;**102**:Online. - 5. Schroll M, Avlund K, Davidsen M. Predictors of five-year functional ability in a longitudinal survey of men and women aged 75 to 80. The 1914-population in Glostrup, Denmark. *Aging* (*Milano*) 1997;**9**:143-52. doi: 10.1007/BF03340140. - 6. Murphy RA, Patel KV, Kritchevsky SB, et al. Weight change, body composition, and risk of mobility disability and mortality in older adults: A population-based cohort study. *J Am Geriatr Soc* 2014;**62**:1476-83. doi: 10.1111/jgs.12954. - 7. Koeppel M. Every step counts mortality and objectively determined step count. *B&G Bewegungstherapie Und Gesundheitssport* 2020;**36**:177.[article in German]. - 8. Moniruzzaman M, Kadota A, Segawa H, et al. Relationship between step counts and cerebral - small vessel disease in Japanese men. *Stroke* 2020;**51**:3584-91. doi: 10.1161/STROKEAHA.120.030141. - 9. Cochrane SK, Chen SH, Fitzgerald JD, et al. Association of accelerometry-measured physical activity and cardiovascular events in mobility-limited older adults: The LIFE (lifestyle interventions and independence for elders) study. *J Am Heart Assoc* 2017;**6**:e007215. doi: 10.1161/JAHA.117.007215. - 10. German C, McClain A, Elfassy T. Steps and all-cause mortality in the US: NHANES. *Clin Cardiol* 2019:S42-S3. - 11. Paluch AE, Carnethon MR, Janet FE, et al. Association of steps per day with premature mortality: Results from the cardia study: 2007 board #7 may 28 3:45 pm 5:45 pm. *Med Sci Sports Exerc* 2020;**52**:531-2. - 12. LaCroix AZ, Bellettiere J, Di C, Lamonte MJ. Steps-per-day and cardiovascular disease mortality in older women: The OPACH study. *Circulation* 2020;**141**:A30. doi: 10.1161/circ.141.suppl_1.30Circulation.13. Dwyer T, Pezic A, Sun C, et al. Objectively measured daily steps and subsequent long term all-cause mortality: The Tasped prospective cohort study. *PloS One* 2015;**10**:e0141274. doi: 10.1371/journal.pone.0141274. - 14. Fox KR, Ku PW, Hillsdon M, et al. Objectively assessed physical activity and lower limb function and prospective associations with mortality and newly diagnosed disease in UK older adults: An OPAL four-year follow-up study. *Age Ageing* 2015;44:261-8. doi: 10.1093/ageing/afu168. - 15. Yamamoto N, Miyazaki H, Shimada M, et al. Daily step count and all-cause mortality in a sample of Japanese elderly people: A cohort study. *BMC Public Health* 2018;**18**:540. doi: 10.1186/s12889-018-5434-5. - 16. Jefferis BJ, Parsons TJ, Sartini C, et al. Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: Does volume of activity matter more than pattern of accumulation? *Br J Sports Med* 2019;**53**:1013-20. doi: 10.1136/bjsports-2017-098733. - 17. Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE. Association of step volume and intensity with all-cause mortality in older women. *JAMA Intern Med* 2019;**179**:1105-12. doi: 10.1001/jamainternmed.2019.0899. - 18. Hansen BH, Dalene KE, Ekelund U, et al. Step by step: Association of device-measured daily steps with all-cause mortality-a prospective cohort study. *Scand J Med Sci Sports* 2020;**30**:1705-11. doi: 10.1111/sms.13726. - 19. Oftedal S, Holliday EG, Attia J, et al. Daily steps and diet, but not sleep, are related to mortality in older australians. *J Sci Med Sport* 2020;**23**:276-82. doi: 10.1016/j.jsams.2019.09.018. - 20. Saint-Maurice PF, Troiano RP, Bassett Jr DR, et al. Association of daily step count and step intensity with mortality among US adults. *JAMA* 2020;**323**:1151-60. doi: 10.1001/jama.2020.1382. - 21. Mañas A, Del Pozo Cruz B, Ekelund U, et al. Association of accelerometer-derived step volume and intensity with hospitalizations and mortality in older adults: A prospective cohort study[published online ahead of print, 2021 May 23]. *J Sport Health Sci* 2021: S2095-2546(21)00052-1. doi: 10.1016/j.jshs.2021.05.004. - 22. Schneider CV, Zandvakili I, Thaiss CA, Schneider KM. Physical activity is associated with reduced risk of liver disease in the prospective UK Biobank cohort. *JHEP Rep* 2021;**3**:100263. doi: 10.1016/j.jhepr.2021.100263. - 23. Jefferis BJ, Parsons TJ, Sartini C, et al. Does total volume of physical activity matter more than pattern for onset of CVD? A prospective cohort study of older British men. *Int J Cardiol* 2019;**278**:267-72. doi: 10.1016/j.ijcard.2018.12.024.